How to help your rebuilt engine last

By Bob Donalds

Just as with the engine in a brand new car, a rebuilt engine needs a break-in period to insure long life and low oil consumption. The new rings, lifters and valves have to find their place in the scheme of things.
The new rings and cylinders generate a lot of friction during the break-in. The bore has a cross-hatch scratched into it, and dragging rings across the freshly honed bore creates initial frictions that are only there until the rings seat. Three rings on four pistons moving up and down real fast, even at low RPM, create a lot of heat in a new motor, and this is extra heat the new motor has to contend with.

Oil is a very good heat exchanger as well as lubricant. I change the motor oil twice in the first thousand miles. Any name-brand 10-30 oil will do the job. The used oil comes out looking like metal flake because it has the residue from the rings and cylinder walls.

You will see a decrease in crankcase pressure when the rings finally seat properly.

I use new or reground OEM (Original Equipment Manufacturer) camshafts and German lifters in my engines. If lubricated properly, these pieces will work-harden. If they become dry, they will scuff and wear out rather than break in. After-market camshafts are not induction-hardened as are the OEM camshafts, and must rely on a hard lifter to harden themselves. I prefer a hardened camshaft to start with. This makes an even playing field for all the parts.

A fresh valve job produces a good seal in the heads and good compression. (Pressure is heat!) Valves will work into the seats very quickly and the clearance needs to be checked twice in the first thousand miles.  I am also very big on spring tension. Those valves should follow the camshaft as closely as possible. They should not float. Most valve-train damage occurs from pounding as they float. I use new springs and sometimes shim them for higher pressure.
The rebuilt engine is oil- and air-cooled, and, as you can tell, overheats even before putting a load on it. So how can you take care of this overheating new engine you just spent money on?

Keep it as cool as possible. Make sure you install the whole cooling system and all fresh-air tubing. Set the timing as best you can. Before you actually start the engine MAKE SURE you have oil pressure. Crank it over with the coil wire removed and watch for the oil light to go out. Now attach the coil wire and start the engine.

Above all, let it idle for at least the first twenty minutes. Keep it at 1500 RPM for that time. The reason for this is to keep the cooling fan spinning fast enough to properly cool the oil and heads.  Driving it for that first twenty minutes (putting a load on it) would be the worst thing you could do. It creates too much heat and the fan might not spin fast enough. Also, wind resistance on the highway increases with speed and adds to the load put on the engine. This is really true for flat-nosed buses. For this reason, once you do begin driving, keep your speed under 55 mph for the at least the first thousand miles.

One last note about gasoline. If it has been in the car for one year or more, get rid of it.  As it enters the exhaust system it is still burning. I have seen exhaust systems glow red-hot because of old fuels.

It has been my experience that small details make or break a project, and these small adjustments and fine tunings are not guess work. After rebuilding an engine, my policy is to review the customer’s installation so that the customer will have the best running engine for the longest possible time. This follow-up is very important, and service not usually offered by other engine rebuilders.

Waterboxer Head and Gasket Replacement

By Bob Donalds

So you’re thinking its time to replace the heads on your water boxer, and you’re asking yourself  if you can do a job like this.  Can this be done on the ground without a lift?   I will try to help you answer these questions.  First, lets go over the most common reasons to remove the cylinder heads. Make sure to be clear about what’s leaking before you begin the job. It can be oil or coolant that’s dripping from the heads. Washing the engine is very helpful when looking for leaks.  If the push rod tubes are leaking or if a lifter has collapsed, you can use an expanding push rod tube, which is available at the dealer for  $50 each, or in the aftermarket for about half of that. The most common coolant leak is from a cracking or splitting rubber outer coolant gasket at the head.

Often this will be accompanied by a corrosive reaction where the rubber gasket contacts the head.  Unfortunately, there is no easy way out of this repair.  The heads must be removed to replace these gaskets, and at this time a close inspection of the heads will indicate the extent of corrosion. A corroded head will not make the best possible seal with the gasket.

Another reason the heads may need to be removed is pressure build up in the cooling system. This is do to the head gasket at the top of the cylinder leaking compression when the engine is cold.

TEST #1: Pressure Tests for the Cooling System
     The first test of the cooling system is done when the engine is cold.  A cooling system pressure tester can be installed in place of the radiator cap. Pressure in the cooling system and hot coolant are not something to be treated lightly.  Use caution, and never remove the radiator cap from a engine  that has been run even for even a short time.   After installing the gauge, pump it up to 10 pounds. Look around for leaks if the gauge shows any pressure loss.

Common trouble spots  include heads, hoses, water pump and rear heater core. If you smell something sweet when you turn the heater fans on, it may be a coolant leak at one of the heater cores, or simply the O-ring at the rear heater valve leaking. Because there is often more then one leak in the system, it is necessary to continue pressure testing until the system holds pressure.

TEST #2
Start the engine cold with no pressure indicated on the gauge.  The pressure in the cooling system builds to aprox 7 lbs at normal running temps looking around for leaks. But if the pressure builds quickly to around 15 lbs the pressure is coming from one of the cylinders through the inner head gasket. This can also show up as a coolant pressure loss in the first test. In extreme cases the cylinder can fill with coolant, and will not turn over. This is know as hydraulic lock, and if you suspect this pull the spark plugs and try to turn the engine again. Pulling the plugs from the engine allows water to escape from the spark plug holes.

DO’S  &  DON’TS  FOR HEAD REMOVAL
and some things to consider before you attempt this job

Yes, head removal can be done on the ground with a good set of heavy duty jack stands. Disconnecting the battery is the first step. I consider cars to be a fire hazard, since  there is everything you need to make a great fire in short order. I have set more than one car aflame.

This is a messy job, and you can expect to spill coolant on the ground. No mater how you jump and dance, those last few drops will get you.

Remove the coolant expansion tank cap and the 6mm Allen head coolant drain bolts between the push rod tubes on each side. I also pull the bleeder from the radiator because it allows the cooling system to drain more completely.  Next drain motor oil remove the filter.  With the fluids draining, start  undoing the ground wires on the left head. Tie rap them together so none are  forgotten . They will need to be cleaned and inspected before reinstalling, using new bolts and anti seize compound. Labeling the wires saves time and guessing later.  Next remove the alternator and the belts, and inspect the belts for wear and cracks.  Check the water pump pulley shaft for bearing play by grabbing the shaft at 12 and 6, and seeing if it wobbles. Now check for leaks at the vent hole on the underside of the pump. If its leaking, this a great time to replace it, since its much easier with the heads off and the cooling system drained.

Unbolt the intake manifolds complete with the fuel hoses and injectors, and  tie them up out of the way.

Removing exhaust bolts and studs at the head to exhaust connection is one of the hardest parts of this job. Use only six point sockets, trying not to round the heads off. When the head of the fastener is rusted you may need  go to the next size smaller socket installed with a hammer or nuts can be spilt then turned off the stud. Drilling or sawing  the head off the bolt works, leaving the remainder of the bolt to grab and remove after the head is off the engine. The exhaust brackets are very important and need to be reinstalled they keep the exhaust pipes from flexing and cracking as the engine moves.

Inspect the adjusters when removing the rocker arms. They take a beating and can be hard to get on short notice.

Keeping a parts list is key to a smooth, timely and effective repair. Faced with the option of using something that is junk, or waiting for my second parts order to arrive, I’ve had to re-use the tired part. I can’t have my grocery getter off the road for too long.

WORDS TO THE WISE
Cylinders do get stuck to the head and taping (hitting) the head just below the exhaust ports with a plastic compethan mallet helps. Going from side to side helps to separate the head from the cylinder. You may need to push the head back in place and start again if the head moves more than two inches with the cylinder still attached. The piston in the stuck cylinder should not be at the bottom of its stroke. DO NOT pull the head and cylinder off  as one because piston rings cannot be compressed to put the cylinder back on until you remove the piston from the engine. Wrist pins and pin clips are hard to access and remove even when using the expanding pin tool and the oxy acetylene torch to soften up the varnish on the pin. The #1 and #3 the pistons are first to be installed and last to be removed. This means the # 2 or 4 cylinders are in the way and must be removed before the 1 or 3 piston pins can be accessed for removal. Then the time comes to install the #2 and #4 piston pins the inaccessibility of the con rod creates a real challenge.  Volkswagen has a special tool (#3090) that supports the connecting rod while you install the wrist pin. One possible solution is to modify a coathanger to do this, but I find it faster to remove the engine and reinstall pistons and cylinders on the engine stand, because I can rotate the engine onto its side.  The o-ring at the bottom of the cylinder is not likely to leak if you disturbed the cylinder.  I Boston bob have never heard it to be a problem but having said this I’m sure I will now here otherwise.

Pistons, cylinders and rings do not show signs of wear like the air cooled engines.The oil consumption is typically not high and the pistons and cylinders do not need to be replaced normally unless over heated or you are doing a total rebuild.

PARTS NEEDED TO REASSEMBLE
     Options for cylinder heads: OEM @$625 each at the dealer, Spanish AMC after market heads @$450 each. We do not use the valves that come with these heads.

There couldn’t be a better time to replace the water pump or any weak exhaust pipes, injector seals and high pressure injection hoses. I recommend using only OEM sealant when resealing cylinder heads. Some silicones can be corrosive when used on aluminum.

Most coolants are now suited for aluminum engines, so read the label on the coolant you are thinking of using. Corrosive inhibitors can be purchased to supplement the coolant, but I don’t think it is necessary if the antifreeze is changed every two years.

How do I know if it is time to replace the lifters? The lifters are hydraulic, and tired lifters take longer to pump up, if they do at all. Lifter replacement is judged by how long you hear  the ticking when the engine is cold. There is no extra labor involved to replace the lifters when the heads are off.

I have tried the procedure in the Bentley book for filling the lifters with oil, and they still take time to quite down when they’re new. I recommend soaking the lifters in oil overnight before installing them. This is just as effective.

PARTS # list
Part  Number  Notes 
cylinder head for the 1.9:  # 025 101 355  (2.1 heads will work)
cylinder head for the  2.1:  # 025 101 355C  (1.9 heads will work)
gasket set (one per side):  # 025 198 012B
black sealant for black coolant rubber gasket:  # D-000-40-01
yellow sealant for head nuts:  # AKD 456-000-02
valve cover (all years):  # 113 101 475 B
cover clip (all years):  #  043 101 487
cylinder head nuts (all years):  # N 901 841 01
push rod tubes 8 needed (all years):  # 025 109 335
water pump 1.9:  # 025 121 010A
water pump 2.1:  # 025 121 010C
thermostat (all years):  # 025 121 113 F
thermostat o-ring (all years):  # 034 121 119
2.1 heat exchanger water hoses at oil filter:  # 025 121 058D &
# 025 121 058G
(These are considered mandatory replacement at this time. They supply coolant to the heat exchanger that is between the oil cooler and the block
short coolant hose from water pump to head:  # N 901 287 03  Mandatory (Same # for the cross over pipe union under pulley if needed.)
expandable push rod tube : # 025 109 337 (If you have a leaking tube or a junk lifter this makes it possible to repair without removing the head. Priced at $50 each at the dealer, also now in the aftermarket for half of that).
hydraulic lifers:  # 022 109 309
valve adjusting screws 9mm:  # 025 109 451
rear heater core (all years):  #  321 819 109
o-ring for rear heater valve:  # 861 819 297
exhaust gasket:  # N 901 316 01 (For collector to exhaust pipe connection. This isn’t included in the head gasket kits, and two are needed.)
high pressure fuel injection hose:  # N 20 281-1
fuel injection seal small:  # 311 133 261 A
fuel injection seal large:  # 311 133 261
muffler bracket upper drivers side 2.1:  # 025 251 519 F
muffler bracket upper pass side 2.1:  # 025 251 520 F
strap for above brackets:  # 025 251 521 C
cat converter 2.1:  # 025 131 701
muffler 2.1 : #  025 251 053 N
exhaust elbow joins front + rear pipe and collector 2.1:  # 025 251 217
exhaust collector pipe before cat 2.1:  # 025 251 147 BM
gasket collector, pipe to cat and cat to muffler 2.1 and 1.9:  # 025 251 509 A
support bracket, front pipe to front pipe:  # 025 251 619
exhaust pipe for 1-3  cylinders (front) 2.1:  # 025 251 172 AD
exhaust pipe for 2-4  cylinders (rear)  2.1:  # 025 251 172 R
exhaust collector joins front + rear pipe ends at cat 1.9:  # 025 251 147D
exhaust pipe for 1+3 cylinders (front) 1.9:  # 025 251 147 G
exhaust pipe for 2=4 cylinders (rear)  1.9:  # 025 172 251 G
driver side lower exhaust bracket,  collector to block 1.9:  # 025 251 235
driver side upper exhaust bracket, collector to head exhaust stud 1.9:  # 025 251 245
driver side upper exhaust bracket, collector to stud on rear pipe 1.9:  # 025 251 227 A
pass side short upper exhaust bracket,  muffler clamp to rear pipe 1.9:  # 025 251 349
pass side long upper exhaust bracket, muffler clamp to block 1.9:  # 025 251 347
pass side longest exhaust bracket, muffler clamp to block 1.9:  # 025 251 349
muffler clamp, upper 1.9:  # 025 251 519
muffler clamp strap, lower 1.9:  # 025 251 521
cat converter 1.9:  # 433 131 701
muffler 1.9:  # 025 251 053 E
tail pipe 1.9:  # 021 251 185 E
tail pipe gasket 1.9:  # 025 251 235
lower tin (protects push rod tubes), left side all years:  # 025 109 655
lower tin (protects push rod tubes), right side all years:  # 025 109 656
HARDWARE 
6×1.0x15mm bolts and washers (2)
8mm nuts (30)
8x30mm bolts for the exhaust (aprox 20)
8mm ID flat washers
4 hoses clamps for the intake runners

TIME TO REASSEMBLE
and to find out what we don’t have.

Run the tap into the head nuts, making sure they are clean inside. Next, take the 10×1.50mm die and clean the head studs.

The lip that holds the head gasket on the block needs to be inspected for burs and rot. If needed, wire brush and clean.  I use Jb weld epoxy in the eroded surface to restore its shape, filing it in aprox. 24 hours when dry.

Install the inner head gaskets in the head with a dab or to of grease to hold it in place. Next do the rubber gasket on the block. Apply the black sealant to the black water gasket in the middle of the gasket.  Put the head onto the studs, leaving  room to install the push rod tubes. I use the push rods to hold up the push rod tubes until they are all in place. Next start one of the center head nut  inside the valve cover to tension the tubes, then inspect the tube gaskets toassure proper  alignment. Turn the one head nut you started so you can start the other nuts.  I apply the yellow head nut sealant to the opening in the head for the stud and to the nut itself, trying to it keep it from getting in the nut. Using the torque pattern in the book bring the head down evenly. This can take two or three times to get the nuts ready for final torquing.  The torque for the heads is 20 ft lbs, then 36 ft lbs with a bar type torque wrench.

PUSH RODS
The push rods can hang up on the edge of the lifters which results in no compression. There are some simple tricks to installing push rods.  First I have heard that  greasing the push rod tip when installing the push rod can help.  When I install push rods I push them in, then lift the far end and push again. This is done with the rocker arm installed, using light pressure to hold the rocker in place until you feel the push rods are seated, then install the nuts. A good pen light is very useful to see the down in the push rod.

BLEEDING THE COOLING SYSTEM
I’ve heard more ways to bleed the cooling system than you can imagine.  Some may even work.  Here’s what I do. Its simple and it works.  This is done only then the engine is cold.  Coolant, when heated up to running temps, will give you a good burn.  I lift the nose of the van about 4 inchs.  Fill the cooling system with coolant. Let stand ten or fifteen minutes with heater valves open. Top off again, and let stand for another five minutes. For the best results, remember to pre-mix fresh coolant with equal amounts water. Next, start the van with at least a full jug of pre mixed coolant at your side. Rev the engine to 1,500 rpm and expect to pour coolant in  the expansion tank. Don’t let it get low.  When the coolant is coming out of the radiator in a steady stream, plug the bleeder in and tighten it. Top of the coolant, tighten the cap, let off the gas, and you’re done. This has worked for me repeatedly.

THE LAST DETAILS
Checking the timing and exhaust emissions are the finishing touches to any engine work. Exhaust gas testing lets me see just how well the engine is burning the fuel. The test must be done before the catalytic converter. That is what the plug  in the exhaust collector pipe is for.  Testing after the cat just shows if the cat is working and it fails to show how well the engine is burning the fuel. This is also the time to check throttle switch operation. If its clicking its probably  working.

Checking the radiator fan and switch is important if the fan does not cycle or responds later (hotter) than you would like. It is most likely the thermal switch that is screwed into the radiator. These do fail, and will also in time be less responsive to temp increases.

The thermostat restricts the coolant flow to the radiator until the engine achieves proper running temps.  There are thermostats that have lower temps and fit the housing.

Another good thing to test or just replace at this time is the coolant temp sensor (also called ntc sensor) for the fuel injection control unit. This test is covered in the Bentley book.

TOOLS NEEDED FOR HEAD REPLACEMENT

6mm Allen wrench 3/8 drive
torque wrench bar type recommended
metric socket set
metric wrench set
2 ton floor jack
heavy duty jack stands I like the 5 ton stands
drain pan or two for oil and coolant
pick for o-rings at top of jugs
something to clean the head surface with wire brush or a sharp scrapper
10×1.5 mm tap and die to clean the  head nuts and studs
hammer and a good chisel for stubborn nuts
screwdrivers misc
plastic compethan mallet for head removal

Final Notes
     My contacts at vw tell me this head gasket and corrosion problem is unheard of in Europe. They suggested that fuel might be the problem, but I don’t know how fuel could contaminate the coolant. The difference is that the fuel system the vans in Europe are carburetored, not fuel injected as in the states. This could this play a roll.  VW now prorates this repair by mileage. Call your local VW dealer for the latest information.

Hydraulic Lifters, the untold story

By Bob Donalds

There are performance problems that have been traced to the hydraulic lifters that are in some air-cooled and all water boxer VW engines. Among the symptoms are noisy lifters on cold start. However keep in mind that if the van has been parked for a few days one or more lifters can bleed down and this can be the reason for the noise and does not necessarily mean that there are lifter problems. The symptoms of the lifter problems I am talking about in this article are low idle when cold, hard or not starting hot, poor performance when the engine warms up and the power (vacuum) assist brakes may not work as well at times because of the low intake manifold vacuum. These symptoms can be caused by improper hydraulic valve setup. This article is about how to properly setup the vanagon engine with hydraulic lifters. There have been a lot of differing opinions and methods regarding proper setup of hydraulic lifters.

This issue of proper setup has haunted me for years and cost me lots of time, money and peace of mind. In fact one of my own vans would not start hot unless it was push started or it was left to cool off for a couple of hours. This went on for 2 years with no trace of a reason until I understood that it was the lifters.

It’s no understatement when I say I have lots of trouble and limited success with preloading of the hydraulic lifters in the VW busses and Vanagons. In fact I have had lifters that would not take any preloading at all. It has been suggested that because the lifters are installed on their side that they trap air above the check ball that’s in the center of the lower piston that’s inside the hydraulic lifter and I agree. Air bound hydraulic lifters that are preloaded or that are set to O lash (no clearance or preload) do not allow the valves to close completely after the engine warms up. I believe this is due to the air in the lifter expanding as the engine warms up. I now understand that installing new or used lifters pre-loaded (no valve clearance) may NEVER allow the hydraulic lifters to displace the air remaining in the lifter because the plunger’s travel in the lifter body is minimized.

A long time ago I gave up trying to fill the lifters per Bentley and never looked at those pages again until I spoke with Stan at Bentley publishing who pointed out that there are two versions of the lifter bleeding process in the book (on page #15.7 and 15.24). I personally found both descriptions confusing. The first method instructs you to fill the lifter with oil and then install the lower piston using a scribe to bleed off the oil under the piston as you press the piston into place. As for installing the lifter socket into the lifter they don’t tell you that after you get the lower piston in place it travels back up when you let it go of it, leaving no room to install the lifter socket and clip. The second procedure would have you compress the lifter in a press with an old push rod and purge the air as the lifter is submerged in oil. They don’t say the procedure can take as long as ten minutes per lifter and that a hydraulic press is needed. So I, as most people do, put only enough oil in the lifter so I can compress it enough to get the clip installed.

In the Past

    When trying to adjust the valves on a rebuilt engine, or when working on an engine that has had the heads or rockers off for a few days or when replacing lifters I have recommended the following. Set the valve lash to .006″ (i.e. no pre-load). This does two things: first the valves will for sure close all the way when the engine warms up, and, secondly, the piston in the lifter is now traveling it’s full range of movement has a much better chance of pumping out any remaining air. Run the engine for a couple of weeks before trying to preload the valves. Bring the engine up to running temp then let it cool down to the point that you will not burn yourself when you start to work on the engine. While the engine is still warm restart it for no more than 30 seconds and check for any valve noise. If you hear noise, drive the car for a few more days and check it again. Next, remove the valve covers, bring each piston to TDC, and turn the adjuster screws in ¼ to ½ turn. If the valve opens when you turn the adjusting screw in this means the lifter is fully pumped up with oil and you can tighten the lock nut. In most cases the lifters will now self-adjust and allow the valve to fully close and stay pumped up. If instead of the valve opening, the rocker arm moves the lifter as you turn the adjuster, then re-set it to .006ths clearance, reinstall the valve cover, and recheck it in a few days. The idea is to replace any unwanted air in the lifter with oil.

So what’s new?

    In the past week I had a customer call and tell me he had not tightened the bolts on his torque plate – the ones that hold the plate to the converter – and after 1400 miles, and having no luck finding that rattling noise, the final bolt came loose, the engine seized, and the van stopped moving. I offered to help him repair the engine. When he dropped it off I got the rest of the story. It seems that after a highway run of less than an hour at 65 mph he pulled in his drive way and let the engine idle and the oil light came on. He also reported that he thought the engine was down on power. At this point I felt that I might learn something if I took the engine apart. So I offered to do so at no expense to the customer and he agreed.

The first thing I did was to put the engine on the engine stand and install a flywheel and put my cut up bell housing and starter motor on so I could spin the engine and test the oil pressure. The oil pressure was at the low end of the normal range 45pds with 10/30. The next test was the compression test and it was 125 on all cylinders a – little low but still ok. Next step was to look at the rockers and check to see if the customer had preloaded the valves. Some valves had lost clearance while others still had approximately .006ths. I was very surprised to see that some lifters were still soft and air bound because the customer had not reported any lifter noise. When the engine was disassembled I inspected and measured everything. The inspection revealed that the only damage or problem was that the customer had scuffed all four pistons on the load side (the load side of the piston is the side that is pressed against the cylinder wall as it’s pushed down on the power stroke).

I was a little disappointed not to have found more of a problem that would explain the oil light coming on (even though the customer had pushed the engine too fast when it was new). The customer had agreed to buy new pistons and cylinders. I thought that was the end of it with no great discoveries until my engine assembler, John Silva, pulled the lifters apart for inspection. John over filled one of the lifters and could not get the lower piston back down into place and instead of pulling the piston out and removing the oil he tried moving the check ball to one side with a scribe and pushed the piston down with a small screw driver. It dropped down enough to allow him to install the upper lifter socket and clip. The next step is what’s missing from the Bentley procedure. John took the same scribe that was used to release the check ball and installed it in the oiling hole on the side of the lifter body. This held the lower piston down so that he could install the upper socket and retaining clip. Once the clip was in place he tested the lifter by pushing the upper socket. The lifter was hard as a rock indicating that there was no air in the lifter. No other methods that I have tried had these results. This looked promising but I remained skeptical. I asked John to finish bleeding the rest of the lifters in the same way and adjust the rockers to the usual .006″ lash. We would test the compression as usual after the engine was completely assembled. The first compression test showed that we had 135 lbs on all cylinders. Next we preloaded the valves ½ turn and immediately repeated the compression test: some of the valves had not closed so we waited ten minutes and repeated the test. The compression was slightly lower: 125 lbs on all cylinders. Because it was lower we then tested each intake and exhaust port with a vacuum tester to see if the valves were closed and found that all the valves were sealed 100 percent. We next removed the valve cover and checked each lifter by prying on the rocker and looking for movement: all the lifters were still hard as a rock. The next morning we checked for soft lifters and found that the # 2 exhaust valve lifter was soft. We spun the engine again for about one minute using the starter motor and then checked the #2 lifter: it had regained most of its rigidity.

My conclusions

    Lifters can be pre-bled and preloaded at ¼ to ½ turn at the time the engine is being assembled provided that the above-mentioned procedure is followed. However, assembled engines always have at least one or more lifters on the lobe of the camshaft holding them open. Open valves have their springs compressed thereby increasing pressure on their lifters. The increased pressure will cause the lifters to lose oil over time. This can be days or weeks, depending on how clean the oil and the lifter’s check valves are. These engines may not have enough oil available to the expanding lifters when the engine is first turned over during the start up procedure. If the oil galley is empty, the lifter can take in air instead of oil and becomes air-bound. An air-bound lifter may expand as the engine heats up, and thereby prevent a valve from closing. To prevent this, some shops use a pre-oiler. Oil is pressure-fed into the oil galleys before the engine is first started.

So, caution must be used when preloading valves on any new engines. Air-bound lifters are hard to detect. Exhaust valves that don’t close completely when the engine warms up will not transfer their heat to the valve seat, as it was designed to. Instead, this excess heat travels down the valve stem and scorches the oil lubricating the valve stem and guides, drastically reducing their life. I have seen this specific damage time and time again on air-cooled engines as little as 10 K miles.

I consider pre-loading valves to be optional. You may never have had this lifter problem before, but I assure you the potential is high and expensive. While the intake manifold vacuum is an easy way to know if the intake valves are completely closed, the only way to be 100% sure all the valves are closed when the engine is warmed up is to do a cylinder pressure differential test (sometimes known as a “leak down” test) that is commonly done on race engines and aircraft. This test measures air pressure going into a cylinder, and how much air remains. 2%-4% is ideal.

I hope this helps

Looking Up VW Part Numbers

One of the most frustrating things for any VW owner can be trying to find parts for your Vanagon.  Many times you will call a local parts store, or the VW dealer, try to describe what you are looking for, but it is a shot in the dark, whether they actually understand you.  So you could be waiting for a week or two for a part, that when it shows up, is the wrong one.  Wouldn’t it be nice to be able to look up your part ahead of time, get the part number, and then call your parts supplier with the part number in hand?  For some reason VW has always jealously guarded their part numbers as if they were made of platinum or some other precious metal.  I can understand this back in the day when they were trying to sell new parts for vehicles that they had a dealership network that depended (partially) on the sale of parts.  Fast forward to our day when the Vanagon is over 30 years old!  Your local VW dealer could care less about the Vanagon (they actually hated them when they were new so guess what they think of them now).  There is no longer any reason I can see to keep faithful VW enthusiasts from getting the part numbers for the parts they need to keep their vehicles on the road.  Yet VW still guards them like they are Fort Knox.  Enter Russian Hackers.  Yup, those guys that everyone hates or sees as the Bogey Man right now.  Well they are actually the best friend your VW ever had because for the last several years they have given us the keys to the kingdom!  A web site that allows you to look up VW’s precious parts diagrams with most of those precious part numbers (yup some are deleted due to age, thanks VW for sharing before that happened… Not!)  Here is a link to the site at this moment:

http://www.oemepc.com

This is subject to change because every few months or so, VW will find them, and kill the site.  But they will usually pop back up somewhere else.  So if you can’t find it at this address let me know and I will update it to the latest and greatest.  Now go, and spend countless hours looking at VW parts exploded view diagrams.  You know you want to.  Be sure to thank the Russian Hackers for their help.  🙂

Blue vs Green Coolant- Fight!

By Dennis Haynes

To begin I wish to apologize for not keeping up with the list and this discussion. I have been a bit busy and this topic seems to get attention like oil and tires. There is just a lot of information out there and probably the best feature of many products is the advertising.

For my experience I have dealt with cooling systems and water treatment for vehicles and numerous industrial systems. The good, bad, and sometimes ugly. I have been amazed how truly de-ionized water can discolor (rouging) stainless steels.

I have been working on VWs since about 1974 and grew up with the introduction of the VW water cooled stuff and even owned some Sciroccos and an 81 Rabbit convertible before getting into Vanagons. Back in the day due to advertising and perceptions most everything got Prestone Green Stuff. Except for an occasional water pump I never knew I had an antifreeze choice problem. Even my first Vanagon, an 84 GL passenger that I purchased about a year old got the green stuff after a water pump change. I sold it at 96K as I needed $$$ to help acquire Fun Bus. That was February 1988.

So let’s talk about Fun Bus! Yes I still have it and lately been using as a daily driver. I am hoping to get it to 350K. I have less than 38K to go. While I have had to do a number of transmission repairs, (Broke 4th gear twice 3-4 slider hub, and a pinion bearing), the engine has never been opened. Currently you can tell where it was parked by the Mobil 1 dripping from the crankshaft seals, (both now), but it still has proper compression, good oil pressure, and the antifreeze leaks now are mostly the heater cores. I did have to replace the valve covers a few years ago as they rusted out enough to leak. Also, once the Vanagon lifter clatter let the push rod fall out the rocker socket for intake valve cylinder 1. However the heads have never been off.

How often do I change antifreeze? Not very. It seems that during “condition based” maintenance there is always a reason to open the cooling system more often than modern antifreezes need to be replaced. Unlike lubrication frequent additions, top offs, and even excessive coolant changes is not a good thing. Why, when you add fresh coolant or water you are adding fresh oxygen. If you have leaks you are also losing fluid but leaving the bad stuff behind and overtime the bad stuff gets concentrated. So the most important part of cooling system maintenance is to not have leaks. In theory the only loss you should have is evaporation from the recovery tank.

The science! I am sure some folks here have home heating systems with radiators or baseboards. Cast iron boilers, copper pipes, valves with steel parts, etc. They all last for 20 to 30 years and there are no additives used all. Fill the system, let the oxygen purge out, metals or whatever reach equilibrium and the stuff is just there.

Now let’s look at the Waterboxer head gasket failure from corrosion problem. For all those that have worked on these and seen the corrosion on the head and also on the case where the gasket sits have you noticed that the corrosion is only in that area? Well, at that point it does not matter the choice or age of the coolant! The gasket (sealant) was failing long before the corrosion.  That’s right. If the gasket seal was good the antifreeze wouldn’t be there. However, once it is there the heated coolant mixture mixes with air and the corrosion process begins.

So now let’s talk about antifreeze types. Back in 1999 I purchased a new motor home. Ford chassis with the Triton V-10 engine. There were numerous stickers near the coolant tank warning to use only specified fluids and NOT to use Dex-Cool. This took me by surprise. After all Dex-Cool was the long life antifreeze darling at the time. My antifreeze education was about to begin.

Fast forward to 2004 and the motor home gets upgraded to one with a Cat Diesel. Diesels it turns out have a whole different bunch of requirements. So I got to learn about cylinder cavitation erosion and all the additives or special antifreezes that deal with that. Also the need for longer life requirements and less abrasives to extend water pump seal life and reduced internal wear of really expensive radiators and stuff.

OK so back to my experience. Of all the engines and cooling systems I’ve worked the coolants that seems to leave the nastiest stuff inside an engine include Dex Cool and the Blue stuff. The Blue stuff is an older technology and I just don’t see a real advantage of it.  Dex-Cool seems to only work in systems designed for it. Flow velocity has to be part of that system design. As I truly like to reduce maintenance requirements (lazy) I became intrigued with the long life solutions used in the large Diesels and industrial uses. The state of the art for these applications include coolants such as Global Final Charge. These are 6 year, 600,000 mile coolants that only require an additive update at the half life for the cylinder cavitation prevention. These coolants also have great “wetting” abilities which improve cooling performance. The only real downside is that with the lower surface tension if there is a chance for a leak there will be one. Using these in the vanagon seems to also have another benefit, extended water pump life. Since these coolants rely less on abrasives for corrosion control water pump seal life is greatly extended.

Fun Bus and most of my customers now run on this. I also do use the pre-mix. It is convenient and I end up with a more consistent mixture. Yes, there is more cost for the “water” part but I know the mixture is correct. Also for winter fill, I have seen the water and antifreeze fills not get mixed enough and cause freeze damage. Especially if a fill is done and you can’t get the engine running long enough to really get the coolant mixed.

As for adding a wetting additive such as “Water Wetter” these high performance Diesel antifreezes have that covered. Like good oils, use the good stuff and additives are not needed.

Vanagon Rear Brakes

By Ken Wilford

Why Vanagon Rear Brakes are Evil and How to make them Good…

Rear brakes on a Vanagon have probably driven me more crazy than any other part of the van. You can put all new brake parts on a van and if you don’t adjust the rear brakes properly your brakes will feel like crap. You can easily improperly install the rear adjusters so that they won’t work, and many of the springs in the rear only go a certain specific way or else they will jam up the adjuster as well. I have learned all of these lessons the hard way. Finally the rear drums can cause major pulsing pedal that you would think is coming from the front brakes because it is so pronounced.

My tips for best performance of rear brakes: Get as much new parts as you can before doing the job. You don’t want to get into the job and not have rear wheel cylinders, etc. that you are going to need.

Rear Drums

I’m not sure if it is really worth turning rear drums. If the drums look smooth on the inside and are within limits then I would clean them with brake cleaner and reuse them but if you have a pulse pedal suspect a bad drum. Replace drums only in pairs. If you have them turned be sure they are only turned in pairs and match each other’s diameter.

Look at the picture above and at the pictures in the Bentley Manual if you have had poor brake performance and compare it to what is installed on your van. Many times I have found parts improperly installed by a brake shop that didn’t know/didn’t care what they were doing. Pay particular attention to the springs that are directly below the adjuster and rear wheel cylinder. They are made so that the hooks grab the center tabs from underneath. This allows the adjuster to clear. You can easily install them upside down but this jams up the adjuster.

As for the adjuster itself it has two ends, both of which need to be installed properly. One end looks like a split boat paddle with one longer piece and one shorter piece. This end goes toward the emergency brake lever. The longer piece needs to get on the inside of the brake shoe metal plate (toward the backing plate) and the shorter side is out where you can see it. The other end looks like a squared off paddle that is much shorter and squatter. One side is square and the other side has a small notch cut out of it. The squared side should be out where you can see it and the other side with the notch out of it should be behind the brake shoe metal plate (toward the backing plate).

Final adjustment:

Once you have everything properly installed, the final adjustment is the key to getting a high pedal and also a good e-brake. Adjust the brake adjuster until you can’t slide the drum on any longer. Now back off the adjuster in five click increments until you can just put the drum on. You don’t want to have to force it on that is too tight. But when it is on you want to hear a dragging noise when you turn it and also a little bit of resistance. Now go inside and try the e-brake cable. It should only pull up three or four clicks. If it goes higher then you still need to adjust the shoes out a bit farther. Put drums on and then try the pedal. It should feel hard and high. If not adjust some more.

That is it. I properly adjusted set of rear brakes will give you great e-brake, smooth braking and also a high pedal that feels great!

Vanagon Front Shifter Removal and Replacement

By Ken Wilford

You can use this guide to remove your shifter if it is broken or you are just pulling it to install new bushings, etc.

  1. Drop your spare tire under the van. You will see a box directly below where the shifter is located.
  2. Remove the 4 10mm nuts holding it in place and remove it.
  3. Now you will see the bottom of the shaft. There is one bolt going through the bottom of it. Remove this. (10mm wrench and socket or 2 wrenches)
  4. Go back into the cab and pull the rubber boot back from the floor.  You will see the mounting plate where the shifter is mounted to the floor.  It has two holes in it.  Mark these with some white paint so you can put the shifter back exactly the same orientation as the old one.
  5. Now you can go up into the cab and pull the whole shifter up and out of the car as one unit.
  6. Put your new/used one back in the reverse of how you did this one. Be sure to line up the mounting plate holes with the paint marks you made and your shifter alignment should be the same as it was.

Vanagon Ignition Switch Replacement

By Ken Wilford

Here is how to remove and replace your Vanagon ignition switch.

1. Unscrew the two retaining screws for the bottom steering column plastic cover and remove it.

2. Pop the cover off of the center of the steering wheel by gently pulling it toward you and once it is removed, unplugging the horn wires.

3. Undo the nut that holds the center of the steering wheel on (a large one- 24mm?).

4. Mark the steering wheel with a marker on the metal that is around the center and the center shaft so you can put it back exactly as you removed it.  I use a line so you can just line the two parts back up.  Now remove the steering wheel, it will just pull toward you and come off without a puller.

5. Reach around the column and unplug the plugs for the ignition switch and the wiper, blinker switch, etc.

6. Insert your key into the ignition and turn it to “on” position.

7. Undo the allen bolt that holds the ignition switch housing to the column.

8. Undo the slotted screws that hold the blinker/wiper arms to the assembly and remove the arm assembly.

9. Gently pry the plastic the center spacer off the central shaft.  I go back and forth with a large flat head screw driver until this can be removed without damaging it.

10. Pull the ignition switch housing toward you off of the steering column.

11. Ignition switch will become accessible now with a small phillips head screw driver from the rear.

12. Reinstallation is reverse of removal 🙂

How to remove and replace Vanagon Brake Booster

By Ken Wilford

I thought I would write this up as I just did this one today.

1. Remove cover on instrument cluster and plastic dust cover.

2. Unplug everything and remove the instrument cluster

3. Place something on the floor of the van to catch any brake fluid that will spill out (rags, a pan, etc).

4. Unhook the two steel brake lines on the brake master cylinder with a 11mm wrench.

5. Unplug the rubber feed hose that goes from the brake fluid reservoir to the clutch master cylinder.

6. Undo the two 13mm nuts that secure the brake master cylinder to the booster and slide the MC out. Stop here and you have the removal for just the MC. (Easy).

7. Remove the steel line that attaches to the clutch master cylinder (12mm wrench).

8. Undo the two 13mm bolts that hold the clutch master cylinder and pull it down until it comes out. Stop here and you have the removal of the clutch master cylinder.

9. Remove plastic pieces under steering wheel and under dash around the area of where the booster is.

10. Remove the four 13mm bolts that secure the booster bracket to the firewall (there is one in each corner).

11. Unhook the two bolts that hold the steering column to the dash. Also unhook the two 10mm bolts that secure the other end of the two steel straps that are above the brake booster.

12. Move the two steel straps out of the way.

13. Pick up on the booster and you will get a better look at the rear of it. The pin that holds the booster linkage to the pedal linkage is secure with a cotter pin on the driver’s side.

14. Remove cotter pin and push retaining pin releasing the booster linkage from the pedal linkage.

15. Unhook the four 13mm bolts that hold the booster to the aluminum pedal mount.

16. Unhook the vacuum line on the brake booster.

17. Pick the booster up and out of the dash.

Installation is the reverse of removal. Please print this out and put it in your Bentley. Feel free to offer suggestions to make this How-to better.

How to Remove and Replace Brake Pads on 86-91 Vanagon

By Ken Wilford

A quick how-to on changing brake pads on Vanagons with Girling Calipers (’86-91 including Syncro).

1. Place van on level, hard surface

2. Chock the rear wheels or put on the emergency brake or put it in park.

3. Jack up van (I used the jack that came with the van)

4. Remove the wheel.

5. Remove upper Caliper bolt that is on the backside of the caliper (hold guide pin with 17mm wrench and remove bolt with 13mm wrench).

6. Loosen lower caliper bolt

7. Swing caliper down out of the way.

8. Remove old brake pads.

9. Crack caliper bleeder screw. (7mm wrench)

10. Use a clamp to compress caliper piston (a 6″ wood clamp will work by placing the body of the clamp against the back of the caliper and the screw side against the rim of the caliper piston. Now tighten the clamp until the piston is almost completely compressed- brake fluid will squirt out so have something to collect it with).

11. Before removing the clamp, close the bleeder screw (this minimizes the amount of air that gets into the system).

12. Place new pads in place of old ones.

13. Swing the caliper back over and align with guide pin.

14. Reinstall guide pin bolt and tighten (see Bentley for Torque Values)

15. Replace wheel

16 Lower van

17. Do brakes on the other side in the same manner

18. Lower the van

19. Fill the brake reservoir to Max.(You will find the reservoir under your instrument cluster cover.)

20. Bleed the brakes (have someone pump up the brakes and hold the pedal down. Crack the brake bleed screw on the caliper and you will hear the air and brake fluid squirting out. Have something to catch it in or you will have a mess on your hands. Now with your friend still holding the pedal down close the bleed screw. Repeat this process as many times as is needed to remove all air from the system. Repeat on the opposite side caliper.)

21. Fill the brake reservoir to Max. Do this at your own risk, disclaimer, legal blah, blah, blah.

I crack the brake bleeds and compress the caliper rather than just compressing the caliper piston in order to prevent crap from being forced back up into the brake master cylinder. If you don’t do it this way you could be doing your master cylinder in.